- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001000003000001
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Zhang, Huaqing (5)
-
Han, Zhu (3)
-
Niyato, Dusit (2)
-
Bu, Shengrong (1)
-
Chen, Rui (1)
-
Gu, Yunan (1)
-
Hong, Choong Seon (1)
-
Kim, Juno (1)
-
Liu, Bingbin (1)
-
Pan, Miao (1)
-
Raveendran, Neetu (1)
-
Risteski, Andrej (1)
-
Song, Lingyang (1)
-
Wang, Jingyi (1)
-
Wang, Li-Chun (1)
-
Xiao, Yong (1)
-
Yu, F. Richard (1)
-
Zhang, Xinyue (1)
-
Zhang, Yanru (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Planning is a critical aspect of multi-step reasoning, yet it remains challenging for large language models (LLMs). In this work, we use pathfinding in graphs as a sandbox for understanding and improving the planning abilities of LLMs. Our results show that while conventional autoregressive training generalizes poorly, an anchoring strategy, whereby a model first predicts a small subset of intermediate nodes along the path, significantly improves the path finding performance. We confirm these gains on two families of graphs with markedly different structures and provide preliminary heuristics for selecting effective anchor nodes, offering guidance for more realistic settings.more » « lessFree, publicly-accessible full text available July 13, 2026
-
Zhang, Xinyue; Chen, Rui; Wang, Jingyi; Zhang, Huaqing; Pan, Miao (, IEEE Global Communications Conference)
-
Raveendran, Neetu; Zhang, Huaqing; Song, Lingyang; Wang, Li-Chun; Hong, Choong Seon; Han, Zhu (, IEEE Transactions on Mobile Computing)null (Ed.)
-
Zhang, Huaqing; Zhang, Yanru; Gu, Yunan; Niyato, Dusit; Han, Zhu (, IEEE Communications Magazine)
-
Zhang, Huaqing; Xiao, Yong; Bu, Shengrong; Niyato, Dusit; Yu, F. Richard; Han, Zhu (, IEEE Internet of Things Journal)
An official website of the United States government
